x^2-8x=45

Simple and best practice solution for x^2-8x=45 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2-8x=45 equation:



x^2-8x=45
We move all terms to the left:
x^2-8x-(45)=0
a = 1; b = -8; c = -45;
Δ = b2-4ac
Δ = -82-4·1·(-45)
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{61}}{2*1}=\frac{8-2\sqrt{61}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{61}}{2*1}=\frac{8+2\sqrt{61}}{2} $

See similar equations:

| -8u–5u=-52 | | -8u-5u=-52 | | 8=-4n^2-12n | | 8=-4n2-12n | | 6x-12=12x+24 | | 2(x+6)=-(x-3) | | -20x+17=-17x+13 | | ((2x-1)/6)+((2x+1)/9)+((x-4)/15)=(5/6) | | (2x-1)/6+(2x+1)/9+(x-4)/15=5/6 | | 0.2x+6.21=18.95 | | 9.95+.30×35=c | | 2(4x-7)=10(x+5) | | 3x(2+4x)=20 | | 2x+9x=x=5 | | 10x2=8x-5 | | 30/100=x/0.5 | | 11+x+(48)=25 | | 8m+7=67 | | -10m+-m+-10m—2m=19 | | -10m+-m+-10m—-2m=19 | | 17k-4K+4K-11k+3k=18 | | 4d-4d+d=5 | | 3p=3-8p^2 | | 2a^2-13a=6 | | 3p=3-8p | | 8x-14=6-2x | | 15*9/3+x=110 | | -10x+5=16x-8 | | 9b-6=b/2+1/4 | | 4x=x+9 | | 10x^2-70x+120=0 | | 2x=4 |

Equations solver categories